Face Recognition Using Pca, Lda and Ica Approaches on Colored Images
نویسندگان
چکیده
In this paper, the performances of appearance-based statistical methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) are tested and compared for the recognition of colored face images. Three sets of experiments are conducted for relative performance evaluations. In the first set of experiments, the recognition performances of PCA, LDA and ICA are demonstrated. The effect of illumination variations is evaluated in the second set, whereas input images are partially occluded in the third set of experiments. The results show that PCA is better than LDA and ICA under different illumination variations but LDA is better than ICA. On the other hand, LDA is more sensitive than PCA and ICA on partial occlusions, but PCA is less sensitive to partial occlusions compared to LDA and ICA sensitivity. That is, PCA performance is better than LDA and ICA while performance of ICA performance is better than LDA on partial occlusions.
منابع مشابه
CSLDA and LDA fusion based face recognition
Face recognition has great demands and become one of the most important research area of pattern recognition but there are several issues involved in it. Unsupervised statistical methods i.e. PCA, LDA, ICA are the most popular algorithms in face recognition that finds the set of basis images and represents faces as linear combination of those images. This paper presents a novel layered face rec...
متن کاملCombining classifiers for face recognition
Current two-dimensional face recognition approaches can obtain a good performance only under constrained environments. However, in the real applications, face appearance changes significantly due to different illumination, pose, and expression. Face recognizers based on different representations of the input face images have different sensitivity to these variations. Therefore, a combination of...
متن کاملPose Invariant Face Recognition using Neuro-Fuzzy Approach
In this paper a pose invariant face recognition using neuro-fuzzy approach is proposed. Here adaptive neuro fuzzy interface system (ANFIS) classifier is used as neuro-fuzzy approach for pose invariant face recognition. In the proposed approach the preprocessing of image is done by using adaptive median filter. It removes the salt pepper noise from the original images. From these denoised images...
متن کاملFace Similarity Space as Perceived by Humans and Artificial Systems
The performance of a local feature based system, using Gabor-filters, and a global template matching based system, using a combination of PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis), was correlated with human performance on a recognition task involving 32 face images. Both systems showed qualitative similarities to human performance in that all but one of the calcu...
متن کاملGaussian Mixture Model Coupled with Independent Component Analysis for Palmprint Verification
In this paper we present a new scheme for Palmprint verification. The proposed method can be viewed as a combination of Gaussian Mixture Model (GMM) followed by Independent Component Analysis (ICA I and ICA II) applied directly on the pixels. This approach follows the path opened by previous works making use of GMM followed by Principal Component Analysis (PCA) and Linear Discriminate Analysis ...
متن کامل